Predictions of *In Vivo* Heterotropic Activation of Cytochrome P450 Enzymatic Activity from *In Vitro* Systems

Annie Blobaum, Ph.D.
Vanderbilt Center for Neuroscience Drug Discovery
ISSX – Toronto
October 2nd, 2013
Atypical Kinetic Profiles for P450: Heterotopic Effects

• Atypical (non-MM) kinetic profiles for P450:
  - Activation, autoactivation, substrate inhibition, partial inhibition, biphasic metabolism

• Notion of homotropic vs. heterotropic cooperativity with P450
  - Heterotropic effects: activation and inhibition
  - Activation mostly noted with P450s 3A4 and 2C9
  - $\alpha$-naphthoflavone activates hydroxylation of benzo[a]pyrene, others.

• Two binding site hypothesis (vs. remote allosteric site)
  - X-ray crystal structures of P450 3A4: unliganded, inhibitors, substrates
  - Kinetic studies, mutagenesis, modeling

Atypical Kinetic Profiles for P450: Heterotopic Effects

- Atypical (non-MM) kinetic profiles for P450:
  - Activation, autoactivation, substrate inhibition, partial inhibition, biphasic metabolism

- Notion of homotropic vs. heterotropic cooperativity with P450
  - Heterotropic effects: activation and inhibition
  - Activation mostly noted with P450s 3A4 and 2C9
  - α-naphthoflavone activates hydroxylation of benzo[a]pyrene, others

- Two binding site hypothesis (vs. remote allosteric site)
  - X-ray crystal structures of P450 3A4: unliganded, inhibitors, substrates
  - Kinetic studies, mutagenesis, modeling

- Typically hear about TDI/induction and DDI potential – is there a concern with activation?

- Limited in vivo observations:

Drug Interaction of Efavirenz and Midazolam: Efavirenz Activates the CYP3A-Mediated Midazolam 1’-Hydroxylation In Vitro

Anja Keubler, Johanna Weiss, Walter E. Haefeli, Gerd Mikus, and Jürgen Burhenne

Dept. of Internal Medicine VI, Clinical Pharmacology and Pharmacoepidemiology, Im Neuenheimer Feld 410, 69120 Heidelberg
In Vitro Tools for Predicting Heterotropic Effects In Vivo

• Recombinant systems
  - Changes in $K_m$, $V_{max}$
  - Typically human P450 isoforms (translation to rodent or non-human primate?)
  - Artificial system with co-expressed or added partner proteins, co-factors

• Hepatic microsomal systems
  - Methods to monitor disappearance of substrate and accumulation of metabolite
  - More complex system with multiple enzymatic pathways present
  - Translation of human metabolism to other species (substrate dependence, correct homolog?)
  - Does not account for non-microsomal sources of metabolism (AO); permeability

• Hepatocytes
  - More physiological system with relevant levels and proximity of co-factors/partner proteins
  - Allows for other sources of metabolism (non-P450, phase II)
  - Large donor pools (human) can mix gender, polymorphs, race, ethnicity
  - Translation to other species? Role of non-hepatic metabolism?
Heterotropic Effects on Drug-Metabolizing Enzyme Activities: In Vitro Curiosity Emerges as a Clinically Meaningful Phenomenon (Perhaps?)

RS Obach

Alterations in cytochrome P4503A4 are the most frequent underlying cause of drug–drug interactions (DDIs). This enzyme exhibits some unusual behaviors; for example, it has been observed that certain inhibitors can affect some CYP3A4-catalyzed reactions more than others, even for the same substrate. This has been proposed to be due to the simultaneous binding of more than one ligand to the enzyme. This behavior has been frequently observed in vitro, but seldom are analogous effects evident in vivo.
Drug Metab Dispos, 2013 Sep 3. [Epub ahead of print]

Heterotropic Activation of the Midazolam Hydroxylase Activity of CYP3A by a Positive Allosteric Modulator of mGlu5: In Vitro to In Vivo Translation and Potential Impact on Clinically Relevant Drug-Drug Interactions.


Vanderbilt University;

Abstract
Allosteric modulation of G-protein coupled receptors (GPCRs) has gained considerable attention in the drug discovery arena as it opens avenues to achieve greater selectivity over orthosteric ligands. We recently identified a series of positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) for the treatment of schizophrenia that exhibited robust heterotropic activation of CYP3A4 enzymatic activity. The prototypical compound from this series, VU0448187, was found to activate CYP3A4 to >100% of its baseline intrinsic midazolam (MDZ) hydroxylase activity in vitro; activation was CYP3A substrate-specific and mGlu5 PAM-dependent. Additional studies revealed the concentration-dependence of CYP3A activation by VU0448187 in multi-species hepatic and intestinal microsomes and hepatocytes, as well as diminished effect observed in the presence of ketoconazole. Kinetic analyses of the effect of VU0448187 on MDZ metabolism in recombinant CYPs or human liver microsomes resulted in a significant increase in \( V_{\text{max}} \) (minimal change in \( K_m \)) and required the presence of cytochrome b5. The atypical kinetics translated to in vivo, as rats receiving an intraperitoneal administration of VU0448187 prior to MDZ treatment demonstrated a significant increase in circulating 1- and 4-hydroxy midazolam (1-OH-MDZ, 4-OH-MDZ) levels compared to rats administered MDZ alone. The discovery of a potent, substrate-selective activator of rodent CYP3A with an in vitro to in vivo translation, serves to illuminate the impact of increasing intrinsic enzymatic activity of hepatic and extrahepatic CYP3A in rodents, and presents the basis to build models capable of framing the clinical relevance of substrate-dependent heterotropic activation.
• A cocktail inhibition approach with human liver microsomes is used in our laboratory to monitor the ability of various compounds to inhibit 4 of the major P450 enzymes.

• A specific substrate/metabolite combination is utilized for each enzyme (midazolam/1-OH-midazolam – P450 3A4) with levels of metabolites being detected by specific MRMs via LC-MS/MS approaches.

• A pan-P450 inhibitor (miconazole) is included as a positive control.
Discovery of Heterotropic Activation of P450 3A

• We discovered a series of mGlu5 positive allosteric modulators that exhibited activation of P450 3A4 midazolam 1-hydroxylase activity in human liver microsomes.

• The prototype compound, designated VU0448187, was chosen for further exploration of this phenomenon \textit{in vitro} and \textit{in vivo}.

\begin{center}
\includegraphics[width=0.25\textwidth]{vuforia.png}
\end{center}

\begin{center}
\includegraphics[width=0.25\textwidth]{vuforia.png}
\end{center}
• LC-MS/MS methodology was developed to monitor the levels of VU0448187, midazolam, 1-OH-midazolam, and 4-OH-midazolam simultaneously from multiple sample matrices (rP450s, microsomes, hepatocytes, rodent plasma and tissue homogenates).

• The activation of P450 3A enzymatic activity was specific for the conversion of midazolam to its hydroxylated metabolites.

• Levels of analyte were quantified against a 12-point standard curve. Based on the study design, data were reported as % of control, product formed per unit time per concentration of P450/protein, or ng/mL ($n = 2$ or more).
Observations in Multi-Species Liver and Intestinal LMs

Results of P450 Cocktail in HLM

HLM – 1-OH-MDZ Formation

Intestinal 20 pool

HIM – 1-OH-MDZ Formation

Hepatic 20 pool

Rat LM – 1-OH-MDZ Formation

VU0448187

Vanderbilt University Medical Center

Vanderbilt Center for Neuroscience Drug Discovery
Effects of 3A Inhibitors and Alternative Substrates in HLM

**Results of P450 Cocktail in HLM**

Hepatic 150 pool

+ Ketoconazole (1 μM)

**HLM – Testosterone Hydroxylation**

**HLM – Progesterone Hydroxylation**
Kinetics of 3A4 Activation in Human LM and rCYPs

Results of P450 Cocktail in HLM

Hepatic 150 pool

V_{max} driven

Recombinant CYPs

Determination of kinetic parameters in HLM
Are Hepatocytes a Better System for *In Vivo* Predictions?

**HLM – 1-OH-MDZ Formation**

**Human Hepatocytes**

**LiverPool**

**Murine Hepatocytes**

VU0464797
Heterotrophic Activation: *In Vivo* PK Studies in SD Rats

**Male SD Rat Metabolism of Midazolam (1 mg/kg IV)**

<table>
<thead>
<tr>
<th>PK Parameter</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLp mL/min/kg</td>
<td>80.0</td>
<td>88.1</td>
</tr>
</tbody>
</table>

- Clearance of midazolam from plasma was suprahepatic (> 70 mL/min/kg) in SD rats.
- It was difficult to detect 1-OH-midazolam and 4-OH-midazolam from a 1 mg/kg IV midazolam dose.
- Higher dose of midazolam would be required *in vivo*; change in route of administration (IP).
Male Sprague-Dawley rats \((n = 2)\) pre-treated for 1 hour with VU0448187 (IP, 10 mg/kg) followed by midazolam (IP, 10 mg/kg) showed a significant increase in plasma 1-OH midazolam levels.

4-OH midazolam levels were also monitored and showed an increase in the presence of VU0448187.
Heterotropic Activation of 3A by VU0448187: Haloperidol

VU0448187 demonstrated a multi-species and substrate-dependent increase in the (midazolam) hydroxylase activity of P450 3A in vitro that was dependent on the presence of cyt b5, resulted in a change in $V_{\text{max}}$ (minimal change in $K_{\text{m}}$), and could be blocked by ketoconazole.

For this compound, the heterotropic effects on MDZ hydroxylase activity were more robust in hepatocytes, suggesting that the use of multi-species HEPs for the prediction of activation effects in vivo may be a more valid model (similar to induction).

Multi-species paradigms exist for modeling heterotropic activation of 3A in vivo. In male SD rats, VU0448187 showed robust activation of MDZ hydroxylase activity that resulted in an increase in both 1-OH and 4-OH-MDZ metabolites.

Preliminary pharmacokinetic studies in mice indicate a potential in vivo model to monitor changes in MDZ clearance, as well as metabolite formation in the presence of VU0448187.
The Path Forward – Future Studies

• Future *in vitro* studies with focus on:
  
  • Alternative substrates; clinical relevance (i.e. Haloperidol)
  
  • Collaboration goals: studies with mutants, modeling, crystallography

• Future *in vivo* studies in rat will focus on:
  
  • The ability of ketoconazole to block the effects of VU0448187 on MDZ metabolism
  
  • The substrate-dependence of 3A activation by VU0448187 (i.e. no observed increase in OH-testosterone levels)
  
  • The scaffold dependence of 3A activation (allosteric modulators from a different structural class do not show the same effect *in vivo*)

• Future *in vivo* studies in mice with focus on:
  
  • Determining the best dosing route and time course for observing heterotropic activation of 3A midazolam hydroxylase activity by VU0448187
  
  • Follow up studies in humanized mice
Acknowledgements

**Vanderbilt Center for Neuroscience Drug Discovery**

Scott Daniels  
Tom Bridges  
Frank Byers  
Margrith Mattmann  
Shaun Stauffer

**Janssen Research and Development**

Claire Mackie

**BioreclamationIVT**

Tim Moeller  
Matt Shipton